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ABSTRACT

The goal of this project is to validate and extend a study by Mecikalski and Bedka that capitalized on
information the Geostationary Operational Environmental Satellite (GOES) instruments provide for now-
casting (i.e., 0–1-h forecasting) convective initiation through the real-time monitoring of cloud-top prop-
erties for moving cumuli. Convective initiation (CI) is defined as the first occurrence of a �35-dBZ radar
echo from a cumuliform cloud. Mecikalski and Bedka’s study concluded that eight infrared GOES-based
“interest fields” of growing cumulus clouds should be monitored over 15–30-min intervals toward predicting
CI: the transition of cloud-top brightness temperature to below 0°C, cloud-top cooling rates, and instan-
taneous and time trends of channel differences 6.5–10.7 and 13.3–10.7 �m. The study results are as follows:
1) measures of accuracy and uncertainty of Mecikalski and Bedka’s algorithm via commonly used skill
scoring procedures, and 2) a report on the relative importance of each interest field to nowcasting CI using
GOES. It is found that for nonpropagating convective events, the skill scores are dependent on which CI
interest fields are considered per pixel and are optimized when three–four fields are met for a given 1-km
GOES pixel in terms of probability of detection, and threat and Heidke skill scores. The lowest false-alarm
rates are found when one field is used: that associated with cloud-top glaciation 30 min prior to CI.
Subsequent recommendations for future research toward improving Mecikalski and Bedka’s study are
suggested especially with regard to constraining CI nowcasts when inhibiting factors are present (e.g.,
capping inversions).

1. Introduction

The study of Mecikalski and Bedka (2006, hereinaf-
ter MB06) demonstrates the use of eight infrared (IR)
channels as “interest fields” from the Geostationary
Operational Environmental Satellite-12 (GOES-12) for

predicting convective initiation (CI) on the 1-km visible
(VIS) pixel scale. Within MB06, two unique attributes
of the GOES-12 data stream are manipulated toward
efficiently monitoring and tracking convective (i.e., cu-
mulus) clouds in successive 5–15-min resolution images:
1) a “cumulus cloud mask” using a combination of VIS
and IR imagery to isolate cumuliform clouds (Berendes
et al. 2008) and 2) a cloud-motion-tracking scheme that
emphasizes the identification of mesoscale flows asso-
ciated with cumulus cloud motions (Bedka and Me-
cikalski 2005; Bedka et al. 2008, manuscript submitted

Corresponding author address: John R. Mecikalski, Atmo-
spheric Science Department, University of Alabama in Hunts-
ville, 320 Sparkman Dr., Huntsville, AL 35805-1912.
E-mail: john.mecikalski@nsstc.uah.edu

DECEMBER 2008 M E C I K A L S K I E T A L . 4899

DOI: 10.1175/2008MWR2352.1

© 2008 American Meteorological Society

MWR2352



to J. Appl. Meteor. Climatol.). These techniques isolate
only the cumulus convection in geostationary imagery,
track moving cumulus convection over time, and iden-
tify growing, newly glaciated convective cloud tops.
Once cumulus cloud tracking is established using satel-
lite-derived “mesoscale” atmospheric motion vectors
(MAMVs), six IR properties (creating eight interest
fields) of the 1 km-resolution clouds are monitored and
cumulus cloud pixels for which �7 of the 8 CI interest
fields have been satisfied are labeled as having “high”
CI potential (�65%) in MB06, assuming an extrapola-
tion of past trends into the future. Details of the eight
interest fields, as well as a physical interpretation, are
provided in Table 1.

For 2004–06, the MB06 algorithm has been transi-
tioned from a “proof of concept” into a real-time prod-
uct, one designed for use in broader applications over
larger domains. These applications include, in addition
to 0–1-h day and night CI nowcasting at 1 km-
resolution, CI climatological applications, 0–90-min
lightning initiation nowcasting, delineation of surface
convergent boundaries (Jay Hanna, NOAA, 2005, per-
sonal communication), the monitoring of 0–2-h cloud-
top cooling and “CI score” trends, within aviation-
safety-based nowcasting systems, specifically the “Au-
toNowcaster” (Mueller et al. 2003; Mecikalski et al.
2007) and the Corridor Integrated Weather System
(CIWS; Wolfson et al. 2004, 2005). Based on the ex-
panded use of the MB06 algorithm, validation and op-
timization of this algorithm is required, which is the
motivation for this study.

Through a detailed visual comparison of CI nowcast
fields and composite radar reflectivity imagery, MB06
indicate that the probability of CI detection [i.e., prob-
ability of detection (POD)] using the aforementioned
methodology is qualitatively �65% when all eight IR
interest fields are used over a range of convective en-
vironments. MB06 also suggests that some CI interest
fields may have greater skill in nowcasting convective
storm development versus others because of the differ-
ing spatial and spectral characteristics of each GOES-

12 IR interest field. The results of this study therefore
include the development of a more complete and quan-
titative understanding of the MB06 algorithm in two
specific areas: 1) absolute accuracy in terms of POD,
false-alarm ratio (FAR), threat score (TS), and the
Heidke skill score (HSS); and 2) the relative impor-
tance of each interest field in predicting future CI oc-
currence across a range of convective environments.

All of these goals are accomplished though the com-
bined usage of past, current, and future satellite and
radar reflectivity data. The time–space matching of 15–
30-min IR trends to radar reflectivity 30–60 min into
the future is nontrivial. Nonlinear convective cloud mo-
tions as cumuli grow in environments with vertical wind
shear, coupled with the nonunique patterns of IR data
(as viewed by geostationary satellites) and radar reflec-
tivity fields for the same cloud, require the use of cor-
relation-based pattern matching techniques in order to
attain a level of satellite–radar field overlap necessary
to develop accuracy statistics. This analysis is described
below and constitutes the majority of the effort for this
study.

The following section overviews the data analysis,
while section 3 presents the methodology. Section 4
describes the main statistical results and an assessment
of the importance of each interest field for predicting
CI. The paper is discussed and concluded in sections 5
and 6, respectively.

2. Data and preparation

Two primary datasets were utilized within this study,
Weather Surveillance Radar-1988 Doppler (WSR-88D)
radar reflectivity, and GOES VIS and IR fields. The
following sections describe these two datasets and the
processing methodologies employed. These were com-
bined to make a dataset consisting of 1 853 265 1-km2

GOES pixels, for three training events (multiple times
on the same day), of which 233 428 cumulus-identified
pixels were monitored via the MB06 algorithm. An ad-

TABLE 1. The MB06 CI nowcasting interest field criteria and their physical relationship to convective cloud growth and glaciation.

CI interest field Purpose and resolution MB06 critical value

6.5–10.7-�m difference (IF1) 4-km cloud-top height relative to upper-tropospheric
WV weighting function (Schmetz et al. 1997)

�35° to �10°C

13.3–10.7-�m difference (IF2) 8-km cloud-top height assessment/updraft width �25° to �5°C
10.7-�m TB (IF3) 4-km cloud-top glaciation (Roberts and Rutledge 2003) �20° � TB � 0°C
10.7-�m TB drop below 0°C (IF4) 4-km cloud-top glaciation (Roberts and Rutledge 2003) Within prior 30 min
10.7-�m TB time trend

(IF5 � 15 min, IF6 � 30 min)
4-km cloud-top growth rate/updraft strength

(Roberts and Rutledge 2003)
��4°C (15 min)�1

�TB (30 min)�1 � �TB (15 min)�1

6.5–10.7-�m time trend (IF7) 4-km multispectral cloud growth �3°C (15 min)�1

13.3–10.7-�m time trend (IF8) 8-km multispectral cloud growth/updraft width �3°C (15 min)�1
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ditional event was used to test the results, as shown
below. Table 2 outlines the events used.

a. WSR-88D data

WSR-88D data from National Weather Service sta-
tion in Hytop, Alabama (KHTX), and Topeka, Kansas
(KTWX), were obtained from the National Climatic
Data Center (NCDC) level II archive. These data were
transformed from the native radar projection to a 1-km
resolution Cartesian grid system by the National Center
for Atmospheric Research (NCAR) REORDER soft-
ware package (Oyle and Case 1995). For each CI event,
data from the grid level approximately 1–1.5 km below
the environmental freezing level (determined from at-
mospheric soundings) were used. This vertical level was
chosen low enough in order to capture the altitude
where CI first occurred (at a level where �35-dBZ ech-
oes were first observed, as close to the ground as pos-
sible), but also to avoid possible effects from bright-
band enhancement of radar reflectivity around the
freezing level. Additionally, only reflectivity values �10
dBZ were examined to reduce the impact of instrument
noise and the appearance of spurious echoes in the
analysis.

b. CI interest fields

The GOES-12 IR CI interest fields computed for the
events investigated in this study and the physical inter-
pretations are summarized in Table 1. A pixel that
meets seven or eight of the CI interest field criteria
represents a growing, newly glaciated cumulus cloud in
a pre-CI state (MB06). A more detailed summary of
the GOES-12 instrument and the channels/multispec-
tral techniques used in relation to CI nowcasting is pro-
vided in MB06.

The interest fields are remapped to the 1-km resolu-
tion Cartesian grid of the WSR-88D data using the Man
Computer Interactive Data Access System (McIDAS;
Lazzara et al. 1999) software package, instead of allow-
ing them to remain in the native GOES-12 satellite-
viewing projection. As the GOES-12 satellite views the

continental United States from the southeast at a geo-
stationary orbit altitude (�35 786 km), a cumulus cloud
pixel is assigned an Earth-relative position that is
slightly northwest of its actual location because of par-
allax. As a result, cumulus cloud features are not ini-
tially collocated with their associated radar-observed
precipitation echoes in GOES-12 imagery (Johnson et
al. 1994). This parallax error is corrected through geo-
metric relationships that compute the required shift of
a given cumulus pixel based on the latitude–longitude
of the GOES-12 satellite nadir point (essentially con-
stant at 0°, 75°W), and the altitude of the cloud feature.
The parallax error is greater for higher cloud features at
larger distances from the GOES-12 nadir field of view,
and is essentially zero for a clear-sky pixel. A nearby
sounding of the atmospheric temperature profile (see
below) is used to translate the cloud-top brightness
temperature into an altitude above Earth’s surface.
This process thereby places the satellite-observed cu-
mulus into the best possible alignment with radar re-
flectivity observations [in lieu of navigation errors in-
duced by the GOES-12 sensor optics (Menzel and Pur-
dom 1994)].

c. Mesoscale atmospheric motion vectors

MAMVs were used to compute both satellite cloud-
top cooling rates and multispectral band differencing
trends (as they are in the MB06 algorithm), and help
assess the future position of radar echoes (see below).
These MAMVs are derived using the Bedka and Me-
cikalski (2005) algorithm, which is configured such that
ageostrophic mesoscale flow components associated
with, and induced by, cumuliform clouds can be iden-
tified. Bedka and Mecikalski (2005) and MB06 demon-
strate the utility of MAMVs in convective storm moni-
toring and nowcasting (i.e., computing cloud-top tem-
perature and multispectral channel differencing trends
for moving cumuli), as well as in depicting divergent
flows in the vicinity of convection (see also Jewett
2007). Bedka et al. (2008, manuscript submitted to J.
Appl. Meteor. Climatol.) establish the relative accuracy
of MAMVs as compared with winds obtained by the

TABLE 2. Description of the case events and a brief summary of the soundings in Fig. 2.

Date Times used

Height of
freezing level

(meters AGL)

Radar height
level used

(meters AGL) Synoptic overview

6 Jul 2004 1400–2200 UTC 3900 2500 Subtropical, with weak shortwave
12 Jul 2004 1400–2200 UTC 4200 2500 Subtropical and upper shortwave
28 Aug 2004 1600–2000 UTC 4000 2500 Subtropical
11 May 2005 2100–2200 UTC 3600 1600 Drier, midwestern summertime
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National Oceanic and Atmospheric Administration’s
(NOAA) Profiler Network and proximity radiosondes.

In this study, the MAMVs are used to help predict
the future position of radar echoes 30–60 min into the
future, which constitutes the validation (i.e., did the
cumuli predicted to produce a �35-dBZ echo reflectiv-
ity indeed achieve this?). Clearly, in order to effectively
optimize CI nowcasting, one must relate the future evo-
lution of cumulus precipitation structures to the cloud-
top diagnostic and growth interest fields observed
within real-time satellite imagery.

Use of MAMVs alone in tracking cumuli undergoing
CI is challenging given the nonlinear motion patterns of
cumulus clouds growing deep into the troposphere (see
Fig. 1). MAMVs represent an instantaneous velocity
based on the motion of cumulus cloud tops only, which
do not necessarily relate well to the motion of the entire
cloud. Previous research in the prediction of radar-
observed convective storm motion reveals that echoes
propagate along the mean 0–6-km flow vector (Johnson
et al. 1998), which cannot effectively be computed using
MAMVs alone. However, MAMVs provide the spa-
tial–temporal correlation analysis (described below)
key first-guess information such that a search radius can
be established for performing the radar echo–IR field
pattern matching.

d. Matching satellite trends to future radar

As previously noted, use of MAMVs are necessary to
advect the IR cloud information to radar echo feature
locations 30 min into the future. Figure 1 exemplifies
why a purely MAMV-based approach, however, which
assumes linear cloud motion over 30–60 min during CI
based only on cloud-top winds, may be degraded in
environments when the wind shear is significant.
Within 1-km resolution radar data, although velocity
information exists, it is only radial, and therefore can-
not be used. Therefore, the chosen approach was to
utilize reflectivity data to calculate the bulk movement
of precipitating cloud features. MAMVs do provide a
“first guess” for the tracking method, as described be-
low.

Once a cumulus cloud pattern is recognized, two ra-
dar views taken 15 min apart are used to calculate
movement of precipitating cloud features; this is done
as a 10 � 10 pixel region is searched, and if more than
one-fourth (i.e., 25 pixels) have �0 dBZ, then a 30-min
future radar image is processed. As a level of quality
control, the future radar pixel location is cross refer-
enced with the satellite-derived “convective cloud
mask” (MB06) computed at this future time to ensure
that this precipitation is convectively induced, thereby
eliminating the introduction of spurious signals from
stratiform clouds. [Note, the current version of the
MB06 method uses the convective cloud masking algo-
rithm of Berendes et al. (2008) and this was not em-
ployed in this study.] This processing further involves
taking a genetic approach, and randomly choosing 10
squares within 30 pixels of the location of the center of
the original 10 � 10 box. A least squares fit (used since
the characteristics of the cloud are likely to stay nearly
the same at 15-min slices) is then done. This procedure
can fail if there is significant rotation in the motion of
clouds and rainfall echo patterns.

Based on the least squares and genetic approaches,
the square with the better average of the two methods
is chosen as the centroid (center location) of the echo’s
future location. Once there is a match, the centroid of
each feature is determined, and the vector between the
two will be the bulk flow. Given the bulk flow, the
future movement using the past two 15-min echoes is
estimated. A simple filter is used to remove noise (or
sporadic echoes outside the main centroid), and so that
the future movement can be optimally predicted. With
the present and future (15 and 30 min) echoes now
aligned, the pixel-scale CI interest fields can be related
to current and future radar echo information.

It is noteworthy that when the centroid and genetic
approaches were not used, a �5.5 million pixel dataset

FIG. 1. Justification for non-MAMV advection of infrared
cumulus cloud features toward matching future radar echoes.
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was formed (using additional events) only employing
MAMV tracking (given that it was computationally far
less expensive to use MAMVs alone in the radar–
satellite matching). The results from this larger dataset
were qualitatively similar to the finding described be-
low, yet were fraught with many mismatches (as dem-
onstrated in Fig. 1), and the skill scores were often
erroneous, when compared to analysis by a human ex-
pert (i.e., pixel-to-pixel matching). These skills did be-
come comparable to those obtained using the centroid
and genetic approaches only when substantial prepro-
cessing and editing (prestatistical analysis) were per-
formed to effectively weed out the mismatched pixels.
In the end, we chose not to use this large, initial dataset
because of the likelihood that we were skewing the
results toward unrealistically high POD, TS, and HSS,
and low FAR scores. In retrospect, because these initial
results were qualitatively similar, we feel good that
those obtained below are robust.

e. Case event description

Four CI events compose our dataset from which the
accuracy assessments are determined (see Table 2).
Three of these events compose the training dataset.
These were within a humid subtropical environment
over north Alabama and south-central Tennessee. One
other event used to evaluate the analysis is for a drier
convective environment over Kansas. It is understood
that the IR interest fields used within the MB06 algo-
rithm will vary somewhat across convective environ-
ments (i.e., convective regimes). The reasons for this
includes the height of the freezing altitude, the amount
of dry air above developing cumulus clouds, and the
available water vapor in the boundary layer supporting
cloud development (i.e., the subsequent in-cloud hu-
midity). Therefore, analyzing cases in a variety of con-
vective environments enhances the robustness of the
validation statistics.

The three training events were chosen because of
their proximity to the HTX Doppler radar within the
GOES-12 view (Table 2), and possess environments in
which moisture for CI was not a factor limiting cumulus
growth and rainfall. The 6 and 12 July, and 28 August
2004 CI events were also selected as the synoptic-scale
forcing was relatively weak, storm motions were rela-
tively slow (�15 m s�1), and both cloud and storm mo-
tions were generally uniform along one velocity vector
regardless of cloud size (i.e., cumuli in both pre- to
post-CI state). Weak vertical shear and the lack of a
deep dry layer within the sounding (see Figs. 2a–c) also
helped dictate use of these days’ data as storm struc-
tures were relatively simple, with a limited tilt in up-

drafts and therefore a higher likelihood that satellite
and radar fields could be optimally collocated in the
vertical. In essence, strong vertical shear would have
likely reduced our ability to collocate radar and satellite
fields for the same storm. The 11 May 2005 CI case
represents an event with stronger synoptic-scale dy-
namic forcing, and was a significant convective event
with numerous outflow interactions, to contrast the
other three subtropical cases; the sounding from To-
peka at 1200 UTC 11 May 2005 is shown in Fig. 2d.

3. Methodology

At this point in the process, the satellite CI interest
fields and current/future radar reflectivity information
are known, assuming satellite/radar data were properly
tracked both backward and forward in time. When
these techniques are applied to the four cases men-
tioned above, a total of over 1.8 million 1-km2 GOES
pixels collocated with WSR-88D level II radar data
were compiled (each day comprising approximately 12–
18 individual 30-min nowcasting periods), with each
pixel possessing values for all eight CI interest fields, as
well as current and future radar reflectivity informa-
tion. It is noteworthy that pixels that possessed 0 inter-
est fields (within their respective “critical” ranges; i.e.,
nothing in GOES suggested developing, growing cumu-
lus) are included in this dataset, such that proper sta-
tistics may be assessed from pixels with radar echoes
present but no IR indicators of CI.

Principal component analysis (PCA) was also per-
formed as a means of estimating information content
and redundancy in these IR data for CI nowcasting.

a. Skill determination

Four measures of forecasting skill (i.e., POD, FAR,
TS, and HSS) are used to evaluate the MB06 CI now-
cast products. The POD and FAR are defined as in
Wilks (2006, 264–265): POD � a/(a 	 c); FAR is de-
fined similarly as FAR � b/(a 	 b). The TS and HSS
are also as in Wilks (2006, 263 and 266, respectively),
where TS � a/(a 	 b 	 c), and HSS � 2(ad � bc)/[(a
	 c)(c 	 d) 	 (a 	 b)(b 	 d)].

In these, POD is the fraction of those occasions when
the forecast event occurred (CI in this case) in which it
was also forecast to occur (a), relative to all obser-
vations of CI (a 	 c). FAR is the fraction of “yes”
forecasts that turned out to be incorrect (b) relative to
all non-CI events (a 	 b). Here, c is the number of
events that were not forecast but where CI was ob-
served, and d is the number of events that were not
forecast and were not observed. The TS (also called the
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“critical success index”) represents the number of cor-
rect forecasts of CI divided by the total number of oc-
casions in which the event was forecast and/or ob-
served. The HSS (Heidke 1926) is a more robust skill
score that summarizes the square contingency tables.
The HSS represents a reference accuracy measure, and
is the proportion correct (forecasts) that would be
achieved by random forecasts that are statistically in-
dependent of the observations, and is the product of
p(ey)p(oy) and p(en)p(on). Here, p represents “prob-
ability,” ey and en are yes and no events, respectively,
and oy and on are observations of yes and no observa-
tions of the event. Therefore, p(ey) represents the prob-
ability of a yes forecast of CI, and p(ey)p(oy) represents

the probability of a yes forecast by chance (Wilks 2006).
An HSS of 1 implies a perfect forecast, and an HSS of
0 implies a forecast equivalent to a reference forecast,
which in this case means random chance.

Given the eight interest fields, two methods have
been developed for presenting the results. The first is
simply to determine and present what IR interest fields
are most and least associated with CI at a given pixel.
The second involves a more complicated procedure of
determining the optimal set of fields for nowcasting CI,
for all possible combinations of fields, from one single
field to all eight per pixel, based on the optimization of
skill scores (i.e., highest POD, TS, and HSS, and the
lowest FAR). These results are presented in Tables 3–6.

FIG. 2. Representative soundings for CI events used within this study (see Table 2): the Birmingham, AL, sounding at (a) 1200 UTC 6
Jul 2004, (b) 1200 UTC 12 Jul 2004, and (c) 1200 UTC 28 Aug 2004; and (d) the Topeka, KS, sounding at 1200 UTC 11 May 2005.
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b. Principal component analysis

PCA is used here to discern the relative amount of
information within the IR data of a GOES pixel (i.e.,
within each of the eight CI interest fields). PCA, also
known as empirical orthogonal function (EOF) analy-
sis, is a common method used to reduce a dataset from
a large number of variables to one in which only a few
new variables are required to describe the necessary
and important information (Wilks 2006). Because of
the commonness of use of PCA within atmospheric
analysis, we refer the reader to Wilks (2006), as well as
more classical treatments by Jolliffe (2002) and Preisen-
dorfer (1988), for an overview of this technique.

For the purposes of this analysis, we are interested in
determining which of the eight interest fields contain a
relative amount of important information in compari-
son to others, or, which combination of indicators is
important; it is unlikely that all of the eight fields will
contain the same level of information on future CI, with
some likely containing redundant information (goal 2
of this paper). In the following section, the PCA for this

dataset, and the skill scores for the MB06 method, are
described.

4. Results

a. Skill analysis

The statistical analysis was performed as a means of
addressing the first objective of this paper (measures of
nowcast skills and uncertainty in the GOES CI meth-
odology). This analysis consists of determining, for all
“cumulus” pixels in the dataset, the POD, FAR, TS,
and HSS as a function of �8 interest fields. Tables 3–6
present these results, respectively. These tables present
the skills as a function of the number of interest fields
per GOES pixel that are in range (see Table 1) and
evaluate how to optimally nowcast with only one field,
all the way to using all eight fields. Specifically, for
these tables, the field(s) that combined to form the
highest skills are those listed, given all possible combi-
nations of one–eight fields (per pixel). The particular
field(s) that contribute(s) to the highest skills are de-
noted with an “X” in the tables.

The far right-hand side of Table 6 lists the contin-
gency table results that the TS and HSS skills (in Tables
3–6) were developed from. This dataset consisted of
233 428 cumulus pixels, and 8946 of these were “CI
pixels” in which a �35-dBZ echo developed out of a
growing cumulus cloud (i.e., out of a cumulus-cloud
pixel). It needs to be noted that the MB06 algorithm
operates on all cumulus pixels, and hence any of the CI
interest fields can be “within range” for any GOES
cumulus pixel. As an example, Table 4 shows that the
transition of cloud-top temperature from above to be-
low 0°C within the past 30 min (IF4; see Table 1) pro-
vides the lowest FARs at �69% (see top row), which
implies that IF4 occurs for the fewest number of cumu-
lus pixels that never initiated into deep convection.

TABLE 4. Minimum FARs as a function of convective initiation
interest field numbers and combinations per GOES (1 � 1 km)
pixel as in Table 3. See Table 3 and text for further explanation.
The particular field(s) that contribute(s) to the highest skills are
denoted with an “X”.

No. IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 FAR

1 X 0.6939
2 X X 0.7061
3 X X X 0.7239
4 X X X X 0.7361
5 X X X X X 0.7397
6 X X X X X X 0.7416
7 X X X X X X X 0.7446
8 X X X X X X X X 0.7456

TABLE 5. Maximum TS as a function of convective initiation
interest field numbers and combinations per GOES (1 � 1 km)
pixel as in Table 3. See Table 3 and text for further explanation.
The particular field(s) that contribute(s) to the highest skills are
denoted with an “X”.

No. IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 TS

1 X 0.2575
2 X X 0.2595
3 X X X 0.2608
4 X X X X 0.2601
5 X X X X X 0.2569
6 X X X X X X 0.2549
7 X X X X X X X 0.2544
8 X X X X X X X X 0.2543

TABLE 3. Maximum PODs as a function of convective initiation
interest field numbers, and combinations, per GOES (1 � 1 km)
pixel. Here the interest fields are abbreviated IF followed by the
number, as in Table 1. In this table, the combination of (rows 2–8)
all or some of the fields need to be present to obtain the POD
scores shown. The particular field(s) that contribute(s) to the
highest skills are denoted with an “X”.

No. IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 POD

1 X 0.8825
2 X X 0.9781
3 X X X 0.9916
4 X X X X 0.9979
5 X X X X X 0.9981
6 X X X X X X 0.9981
7 X X X X X X X 0.9981
8 X X X X X X X X 0.9981

DECEMBER 2008 M E C I K A L S K I E T A L . 4905



In forming these statistics, we have evaluated all 255
possible combinations of eight fields per pixel, with the
idea that some or all fields may be present. For ex-
ample, in the case of four fields, we logically consider
two conditions: 1) whether all four are “in range” (a
logical “and” condition), and 2) whether any four are in
range (a logical “or” condition) for a given pixel. The
data in Tables 3–6 are for the logical-or case as a means
of maximizing skills for various combinations; we will
only discuss the second set of results: those in which we
demand that any one field be in range for a pixel. The
first condition is much more restrictive, and provides
significantly lower skill scores.

From Table 3 it is seen that use of the instantaneous
13.3–10.7-�m channel difference (IF2) provides the
highest POD at 88.3%; stated another way, when this
channel difference is within the �25- to �5-K range,
there is an 88.3% probability that CI (as we have de-
fined it) will occur within the following 30 min for the
moving cumulus as observed by GOES. The POD in-
creases to 97.8% when the 30-min time change in 10.7
�m (IF6) is used together IF2. The PODs peak at
99.8% when five or more fields are considered to-
gether, in particular, fields 1–2, 4, and 6–7. This would
suggest that inclusion of IF3, IF5, and IF8 may not add
much toward increasing POD when single-pixel scoring
is performed. (Future work is addressing issues associ-
ated with errors in computing IF5 and IF6, caused by
incorrect tracking of growing cumulus.) When we insist
on all fields being in range (the logical and condition)
the PODs maximize for one field just as shown in Table
3, but decrease to only 9.3% when all eight fields are
considered per pixel. The interpretation of this is that
all eight fields are in range only 9.3% of the time when
CI is observed 30 min into the future, but, when all
eight fields are in range, we find that the probability for
CI is quite high (over 90%) for that pixel. Surprisingly,
the FARs remain above 65% when requiring that all
eight fields be simultaneously in range.

Results derived from processing these data also sug-

gest these following single-field frequencies when CI
was observed, for a given interest field being “within
range” for a pixel (i.e., a in the contingency table di-
vided by 8946): IF1 75.1%, IF2 88.3% (as shown in
Table 3), IF3 44.9%, IF4 23.1%, IF5 54.2%, IF6 73.0%,
IF7 60.4%, and IF8 48.1%. When CI was predicted but
not observed (i.e., b/8946), the following results were
obtained: the single-field results were 67.0% for IF1,
82.8% for IF2, 36.4% for IF3, 17.9% for IF4, 55.4% for
IF5, 75.3% for IF6, 59.1% for IF7, and 46.3% for IF8.
Therefore, IF4 was not in range when CI was nowcast
only �18% of the time.

As stated above, Table 4 shows that (single interest
field) FAR scores are minimized when IF4 is used
alone, at 69.4%. IF4 signifies glaciation; without this
indicator being available for a given cumulus cloud, CI
would not be likely, except when “warm rain” micro-
physical processes are dominant (Pruppacher and Klett
1998, chapter 9; see below regarding the weaknesses of
the MB06 method with respect to convection occurring
in various environments). When using additional fields,
we find that the FARs increase to approximately 74%–
75%. We speculate that these relatively large FARs
may infer a limit to satellite-based CI nowcasting, and
suggests that other additional information will be re-
quired to constrain the results, for example, the loca-
tion and strength of a capping inversion that very often
inhibits CI. It also suggests that errors in cumulus track-
ing, and those associated with 4-km IR resolution, pro-
vide current-day limits to the MB06 method (i.e., IR
data are at scales above the “cumulus cloud scale,”
namely �1 km).

Table 5 and 6 show the TS and HSS skills, respec-
tively. Several interesting features are apparent. First,
threat scores are highest (26.1%) when 3 interest fields
are used (IF2, IF3, and IF4), with the HSS maximizing
at 37.9%, for the same three fields. The TS and HSS in
these two tables, in which we require some or all of the
fields to be within range, are otherwise nearly constant.
The contingency table numbers (a, b, c, and d) in Table

TABLE 6. Maximum HSS as a function of convective initiation interest field numbers and combinations per GOES (1 � 1 km) pixel
as in Table 3. The contingency table values a, b, c, and d, are also provided, which apply to Tables 3–6. A total of 233 428 GOES pixels
were evaluated to obtain the contingency results. The particular field(s) that contribute(s) to the highest skills are denoted with an “X”.

No. IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 HSS a b c d

1 X 0.3752 7895 21 720 1051 202 762
2 X X 0.3775 8062 22 116 884 202 366
3 X X X 0.3785 8250 22 683 696 201 799
4 X X X X 0.3766 8478 23 650 468 200 832
5 X X X X X 0.3715 8671 24 805 275 199 677
6 X X X X X X 0.3679 8683 25 190 263 199 292
7 X X X X X X X 0.3670 8929 26 154 17 198 328
8 X X X X X X X X 0.3669 8929 26 163 17 198 319
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6 show that up to 8929 of the 8946 are nowcasted via
this method, with 17 pixels (the “c” value) being missed
entirely. Again, it is surmised that this implies that ad-
ditional nonsatellite information may be needed to sig-
nificantly improve the MB06 method for TS and HSS
skills. We feel however, that it does not suggest that
some CI interest fields provide limited information to-
ward nowcasting CI, especially in light of the PCA re-
sults to be discussed below (Table 7).

Some additional analysis was performed in which we
considered the individual cases of IF1–8 being within
range (not shown). This analysis suggests that for those
pixels that possessed exactly a given amount of IFs in
range, the TS reaches �34% for the IF6–7 pixels (com-
prising IF1, IF2, IF3, IF4, IF6, and IF8; IF7 contributes
to the IF7 case), while the HSS reached a maximum at
�50% for the IF6–7 pixels (with the same fields being
important as for the TS results). One problem with this
analysis is that the number of “hits” for nowcasting CI
decrease significantly from 7895 to 833 as the number
of fields used in the nowcast increase from 1 to 8, ex-
emplifying the low PODs seen for the logical and re-
sults (i.e., �9.3%).

The relationship of the results in Tables 3–6 to physi-
cal cumulus cloud behavior observed by GOES sug-
gests the following: 1) Incorporation of the 8-km-
resolution 13.3-�m channel (as interpolated to the
1-km radar data resolution for this application) pro-
vides high value in detecting and observing cloud
growth of the larger cumulus clouds (i.e., the larger
updrafts). In other words, when a cumulus cloud pro-
duces a strong signal in the 13.3-�m channel it implies
an updraft of considerable size—between 4 and 8 km in
width. We surmise then that as updraft widths increase
there is increased likelihood of CI over the next hour
(larger updrafts are more likely to persist for longer
time periods). This is a fortuitous outcome of this study,
and suggests that with any geostationary satellite, use of
lower-resolution data (approximately 4–8 km) may be
valuable for nowcasting the CI process. 2) Cloud-top
glaciation, via the transition of the 10.7-�m IR TB from
above to below freezing, is key for maximizing PODs,
TSs, and HSSs. The reasoning for this was discussed
above. 3) Cloud-top temperature (IF3) are valuable for
increasing TS and HSS skills. 4) The 6.5–10.7-�m IR TB

difference is more important than the 15-min trend in
this field, as well as cloud-top cooling rates, for moni-
toring in-cloud updrafts toward the occurrence of CI.
This channel difference is highest for deep cumulus ex-
tending into middle troposphere levels, and hence
those that have likely broken a capping inversion. This
result was not anticipated given the results of Roberts
and Rutledge (2003). The 15-min cooling rate (versus

the 30-min rate) may be a poorer discriminator of CI
given that many “towering” cumuli can possess cloud-
top cooling rates consistent with those found by Rob-
erts and Rutledge, albeit never grow far enough to
eventually produce rainfall. We suspect that many cu-
muli that grow rapidly (i.e., towering cumulus) never
achieve CI due to the presence of capping inversions,
hence resulting in lower skill score results.

Tables 3–6 also suggest the following “hierarchy” of
interest field usage for nowcasting the occurrence of a
�35-dBZ radar echo given information from the
GOES-12 instruments (the second objective of this
study): 1) 13.3–10.7-�m TB difference (IF2), 2) the tran-
sition from above to below 0°C as measured by the
10.7-�m channel (IF4), 3) cloud-top temperature (10.7
TB; IF3), 4) the 6.5–10.7-�m TB difference (IF1), and 4)
the time trend in 6.5–10.7-�m TB difference (IF7). The
15- and 30-min cloud-top cooling rates measured
through the 10.7-�m channel values (IF5 and IF6) ap-
pear next in line for contributing to CI nowcasting
value. As shown, TS and the HSS are both maximized
when using four fields (IF1–IF4). The statistical results
highlight the need to understand when certain IR fields
will not add value to the CI nowcast, and that condi-
tional (or intelligent) scoring has value over simply us-
ing all eight fields per pixel. Tables 3–6 also illustrate an
interesting aspect of the MB06 method: when fewer
than eight interest fields are used in the scoring, each
pixel can possess a unique set of skill scores, depending
on which fields happen to be within range. As an ex-
ample, if a pixel’s score is 6 (say if IF1, IF3, IF4, IF6,
IF7, and IF8 are all in range), then it has a unique set of
skill scores in comparison with another pixel with a
different set of six fields within range. Use of Tables 3–6
therefore allows for more certainty when applying the
MB06 algorithm since the method’s skill is understood
when a prescribed set of fields is chosen.

As a means of demonstrating various approaches to
per-pixel scoring (hence the variations in nowcast ac-
curacy), several examples are shown. Results for 2
times during the 6 July 2004 event (1702 and 1715
UTC), and at 2015 UTC 11 May 2005, are seen in Figs.
3a–f, 4a–f, and–5a–f, respectively. Shown panels a and b
are current (the time when the CI nowcast was made)
and future (the time when the CI nowcast becomes
valid: 30–60 min into the future) radar reflectivity, the
MB06 scoring approach with seven–eight of eight indi-
cators within the range (labeled “scoring-based now-
cast” in panels c), the MB06 methodology in which any
four of eight interest fields are within their respective
ranges (labeled “SATCAST4 nowcast” in panels d), the
MB06 methodology in which all eight interest fields are
within their respective ranges (labeled “SATCAST8
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FIG. 3. Comparison of nowcasting methods for a case found at 1702 UTC 6 Jul 2004. Shown
are the Hytop, AL (KHTX), WSR-88D reflectivity at a 2-km height at (a) 1702 UTC and (b)
the positive differences in reflectivity at 1732 UTC, i.e., the reflectivity at 1732 UTC minus
that at 1702 UTC, with all negative differences removed from the plot. Here (a) is the initial
time radar reflectivity (t0), and (b) is the time t � t0 	 30 min. (c) The CI nowcasting method
as developed in MB06 (labeled scoring-based nowcasting, i.e., seven or eight of eight fields are
within range). (d) For comparison, the scoring approach in which any four of the eight interest
fields are within range. (e) The MB06 method in which all eight fields are within range, and
(f) one approach (labeled optimal) as described in the text in which IF2, IF1, IF6, and IF4 are
used together. The nowcasts in (c)–(f) were created at 1702 UTC, and are valid between 1702
and 1802 UTC. See text for discussion.
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nowcast” in panels e), and one approach (labeled “op-
timal” in panels f) using only fields IF2, IF1, IF6, and
IF4 together.

From these figures, several things can be seen and
understood: 1) using the MB06 method with any four
fields within the range leads to relatively poor skill re-
sults, as seen in Figs. 3d, 4d, and 5d, with significant
overpredictions (high PODs) of CI; these overpredic-
tions of CI have been quantified as nearly a factor of 3.
2) Using the MB06 method with seven or eight of eight

fields mimics the optimal images. 3) Figures 3f, 4f, and
5f show a reduction in the number of cumulus pixels
forecasted to experience CI within the 0–1-h timeframe
by approximately 5%–10%, relative to the 7–8 scored
MB06 method. 4) The MB06 method with eight of eight
fields within range provides the most conservative es-
timate of new CI. From these figures, the use of simple
(unconditional scoring) suggests that the MB06 method
with all eight IR indicators in range provides nearly the
highest quality nowcasts, and the use of scoring with

FIG. 4. As in Fig. 3, but the initial time (t0) is (a) 1715 UTC 6 Jul 2004, and the following
30-min difference time is (b) 1745 UTC 6 Jul 2004. (c)–(f) Both forecasts were created at 1715
UTC, and are valid between 1715 and 1815 UTC.
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seven interest fields (i.e., with IF5 not included) is one
way of optimizing this algorithm for either maximizing
the TS and the HSS.

b. Principal component analysis

The results of the PCA analysis for this dataset are
shown in Table 7. These results pertain to pixels meet-

ing the CI definition. In this analysis, only seven inter-
est fields could be assessed; IF4 is a binary field, which
does not work well within PCA.

Within the lower triangular matrix shown in Table 7,
significant correlations (above |0.7|) are in boldface.
Notable high correlations exist between IF2 and IF1
(positive), IF3 and IF1 (negative), IF3 and IF2 (nega-

FIG. 5. As in Fig. 3, but the initial time (t0) is (a) 2015 UTC 11 May 2005 over Topeka for
WSR-88D reflectivity at a 2-km height, and the following 30-min difference time is (b) 2045
UTC 11 May 2005. (c)–(f) Both forecasts were created at 2015 UTC, and are valid between
2015 and 2115 UTC. Note that this event demonstrates how these methods compare in regions
distant from the initial test domain over AL and southern middle TN.
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tive), IF7 and IF5 (negative), IF8 and IF5 (negative),
and IF8 and IF7 (positive). Static channel differences
between the 6.5–10.7-, 13.3–10.7-, and 10.7-�m chan-
nels are strongly related to cloud-top temperature as
obtained from IF3. We also note with surprise that IF5
and IF6 are only correlated at �0.6, which seems con-
sistent with the results of Tables 3–6. IF7 and 8 are also
highly correlated, which likely follows from the high
correlation seen between IF1 and IF2.

Assessment of the principal components and ex-
plained variance tables provides an interesting conclu-
sion. 1) Principal component 1 (comprising IF1, IF2,
IF3, and IF6, each with explained variance �10) alone
describes 67.64% of the variance for forecasting CI
from these data, with component 2 (comprising IF1,
IF3, and IF5–8) adding another 20.83% (totaling
88.47%) and component 3 (comprising IF5–8) adding
another 7.26% (totaling 95.73%). 2) If principal com-
ponents 1–3 are considered valuable together, then
analysis of the explained variances between all IFs
shows that all of the seven fields contribute some level of
useful information to CI nowcasting. It was also deter-
mined above the relevance of cloud-top glaciation (IF4)
to the CI process. This implies that use of fewer than
seven IFs can set skill limits to the scoring approach
used in MB06, as demonstrated in Figs. 3d, 4d, and 5d.

5. Discussion and uncertainty analysis

Provided the results above, we will now discuss the
analysis uncertainties. This research has shown that un-
specified 1–8 scoring using MB06 may not be optimal
versus use of only 3–4 (scoring using IF1, IF2, IF3, or
IF4 per pixel) or all 8 at once per pixel. However, the
MB06 method should provide reasonable skill over a
range of convective environments, especially in non-
tropical conditions.

It should be noted that the basis for all accuracy cal-
culations and skill scores is the requirement that cloud
tracking is robust. Use of the MB06 algorithm where
cumulus tracking is unavailable or of poor quality
causes the skill scores to suffer dramatically. For this
work, we realize that the MAMVs (used in MB06) are
only as accurate as the retrieval algorithm, and in cases
of significant vertical wind shear [approximately �10
m s�1 (1 km)�1] we can expect accuracies to fall off in
our CI predictions, both spatially and temporally.

There are several limitations and sources for error in
the above validation approach. These will be discussed
in turn. The first is that there is certainly a level of
mismatch between GOES and WSR-88D data (see Fig.
1). Figure 6 (also shown in MB06) illustrates how mis-
match can occur because of the physical difference in

TABLE 7. PCA results for eight CI interest fields. The first eight rows show the correlation matrix as a lower-triangular matrix. For
this analysis, because IF4 was a binary (yes or no) condition, we could not use it within the PCA. Based on the analysis shown in the
last eight rows, PC1–3 are considered to contain useful information, and, more important, none of the seven CI interest fields contain
a significant amount of redundant information on forecasting the occurrence of CI using GOES IR data. Here, “ExVar” is explained
variance. Boldface numbers show significant correlations and value as described in text.

Correlations IF1 IF2 IF3 IF5 IF6 IF7 IF8

IF1 1.000 — — — — — —
IF2 0.8581 1.000 — — — — —
IF3 �0.9388 �0.8690 1.000 — — — —
IF5 �0.2411 �0.3304 0.2818 1.000 — — —
IF6 �0.4403 �0.4989 0.5143 0.5976 1.000 — —
IF7 0.1405 0.2246 �0.1358 �0.9323 �0.5029 1.000 —
IF8 0.0914 0.3405 �0.0892 �0.7743 �0.3654 0.7826 1.000
ExVar
PC1 23.745 12.318 �33.025 �7.552 �16.327 4.048 2.986
PC2 10.425 1.758 �11.616 22.017 22.970 �17.277 �13.936
PC3 7.712 5.807 �1.729 �17.353 34.192 15.330 17.877
PC4 �1.057 �28.687 �11.201 �17.045 5.090 10.407 �26.514
PC5 �39.710 6.427 �28.009 �4.775 4.812 �9.567 6.700
PC6 �6.859 34.038 7.016 �5.932 2.323 14.112 �29.721
PC7 �7.123 �5.950 �9.345 33.245 �0.824 39.048 4.465
PC Eigenvalue % Variance
1 396.87 67.64
2 122.21 20.83
3 42.57 7.26
4 11.59 1.98
5 8.93 1.52
6 2.66 0.454
7 1.89 0.322
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area coverage between the GOES IR signal and WSR-
88D radar echo for a given cloud. This can be quanti-
fied for cases when a cumulus cloud consumes less than
a 4 km � 4 km GOES IR pixel (i.e., 16 1-km-resolution
pixels), in essence, when the cumulus updraft is smaller
than 4 km2; recall that the 4-km data are used at 1-km
resolution in MB06, to retain the full capabilities the
visible data provide in terms of resolution for identify-
ing cumulus clouds. For example, if a cumulus cloud
feature is 3 versus 4 km2, the cloudy region occupies
56.25% within a 4-km-resolution GOES 10.7-�m pixel
and 43.75% is from the clear air. The cloud signal
reaching the GOES IR sensor, being averaged over the

pixel area, decreases to 25% and 6.25% for 2- and
1-km2 updraft/cumulus, respectively (versus a 4-km2

pixel). Clearly this is a source of error in this method
and, to be more specific, in the values obtained for each
CI interest field by GOES. It is suspected that this con-
tributes to the relatively low TS and HSS, depending on
what type of scoring is used.

Other sources of mismatch between GOES and
WSR-88D could also result from poor cloud/radar pixel
tracking using MAMVs and the parallax view correc-
tion procedure. It is felt that the MAMV error is limited
to environments possessing significant vertical wind
shear, which was not the case in the four events used in
this analysis (see also, the discussion in MB06). Errors
due to incorrect parallax corrections, albeit a possible
source of mismatch between GOES and WSR-88D
data, are constrained by the viewing geometry of the
GOES satellite for clouds at 33°–36°N; implementation
of our parallax corrections are limited to the maximum
error possible from this source: �4 km or �1 GOES IR
pixel. We feel very confident in our implementation of
the parallax correction, especially given the aforemen-
tioned quality control checks that ensure that locations
of radar echoes correspond to satellite observed cumu-
lus clouds.

6. Conclusions

This project extended a previous study that demon-
strated the use of GOES VIS and IR data for estimat-
ing 0–1-h CI through the real-time monitoring of cloud-
top infrared properties by assessing the explicit contri-
butions of all satellite interest fields to CI predictability.
The previously reported accuracy from MB06 for 1-km2

CI nowcasts was �65% in terms of POD. This study
represents a sound quantification of this accuracy, and
of the relative importance of a given IR interest field to
CI predictions.

Other end results of this research are 1) measures of
accuracy (i.e., FAR, POD, TS, and HSS) skills, and
uncertainty in the GOES CI methodology, and 2) a
report on the relative importance of each interest field
to forecasting CI using GOES.

The maximum POD for the MB06 method (with
eight of eight fields in range) is �99.8%, with FAR
skills minimized at �69%. The TS and HSS maximize
at 26.1% and �38%, respectively, when three fields are
scored. Use of �8 fields results in “conditional skills,”
which may be used as well within this algorithm, and
that implies considerable variability in per-pixel scores
depending on which IR fields are within range. Figures
3–5 demonstrate these skills for one example of condi-
tional scoring in which IF2, IF1, IF6, and IF4 are used,

FIG. 6. Schematic that demonstrates the problems associated
with correlating a radar echo with a satellite-viewed cloud in the
IR portion of the spectrum. (left) The initial size and shape of a
cumulus at the time of a CI nowcast (t � 0). The star represents
a pixel where at least seven CI interest field criteria are met (i.e.,
a CI nowcast pixel). (top right) “The optimal”: the radar echo
(dBZ ) maximum corresponds well with the cloud-relative loca-
tion of the CI nowcast pixel 30 min later. This correspondence
results from relatively low vertical shear and simplistic internal
cumulus dynamics, similar to that found in a summertime “air-
mass” thunderstorm over the southern United States. (bottom
right) “The nonoptimal”: the CI nowcast pixel and radar echoes
are poorly related in space. This results from high vertical shear
and complex internal cumulus dynamics, causing the precipitation
to shift away from the cloud-relative location of satellite-derived
CI signatures (i.e., center of the cloud). This situation can occur in
association with a squall line or supercell-type thunderstorm
(Browning 1964) and leads to “error” within the methods de-
scribed, despite the fact that our methods have “nowcast” the
presence of a precipitating cumulus cloud at a 30-min lead time.
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for three events. This results in more cumulus pixels
highlighted as having high CI potential, as compared to
the MB06 procedure with seven–eight or eight scores.
Tables 5 and 6 suggest that using IF2, IF3, or IF4 in
MB06 alone maximize the TS and HSS skills, hence
maximizing POD at �99% and keeping the FARs rela-
tively low.

Describing these results in terms of cumulus cloud
behavior as observed by GOES suggests the following:
1) incorporation of the 8-km-resolution 13.3-�m chan-
nel provides high value in detecting and observing
cloud growth of the larger cumulus clouds (i.e., as up-
draft widths increase there is increased likelihood of CI
over the next hour; larger updrafts survive longer); 2)
the transition from above to below 0°C as measured by
the 10.7-�m channel (i.e., cloud-top glaciation); 3)
cloud-top temperature (colder cumulus imply CI); 4)
the 6.5–10.7-�m TB difference (i.e., cumulus growing
into middle tropospheric levels implies a capping inver-
sion is no longer present); and 5) the time trend in
6.5–10.7-�m TB difference. The 15- and 30-min cloud-
top cooling rates measured through the 10.7-�m chan-
nel values are important as well for contributing to CI
nowcasting value, as suggested by Roberts and Rut-
ledge (2003). The statistical results highlight the need to
understand when certain IR fields will not add value to
the CI nowcast, and that conditional scoring has more
value over simply using all eight fields per pixel. Tables
3–6 also illustrate an interesting aspect of the MB06
method, namely that when fewer than eight interest
fields are used in the scoring, each pixel possesses a
unique set of skill scores, depending on which fields
happen to be within range. Use of those combinations
presented in the tables, as well as use of eight of eight
fields, precludes some of this uncertainty.

New research is under way to optimize the MB06
algorithm for various convective “regime” environ-
ments. Specifically, it is recognized that in cases where
the warm rain microphysical process dominates (i.e., in
marine environments), this algorithm will likely under-
predict the occurrence of �35-dBZ echoes. Also, in
particularly dry environments (e.g., the intermountain
western United States and the Mexican Plateau), it is
believed that the MB06 procedure will significantly
overpredict CI as evaporation of rainfall is high (and
rainfall efficiencies are low), leading to cases where a
35-dBZ radar echo is never attained at the surface.
Based on the high FARs with the MB06 method, it is
also a focus of new research to develop methods that
help constrain the satellite-based CI estimates by in-
cluding environmental factors known to inhibit CI (e.g.,
the intensity of the capping inversion). Such informa-

tion can readily be obtained from operational numeri-
cal weather prediction models.

Performing analysis using geostationary and polar-
orbiting satellites, with IR sensors that possess more
channels than GOES, is also occurring. For example,
the Moderate Resolution Imaging Spectroradiometer
(MODIS) and the European Spinning Enhanced Vis-
ible and infrared Imager (SEVIRI) on the Meteosat
Second Generation (MSG; Meteosat-8 and Meteosat-9)
instrument possess 37 and 12 channels, respectively.
Using SEVIRI data, for example, may provide up to an
additional �10 interest fields (capitalizing on the
0.8-, 1.6-, 3.8-, 6.2-, 7.3-, 8.7-, and 12.0-�m channels,
along with time trends of difference channels like 8.7–
10.8 �m) will improve the MB06 methodology for
monitoring cloud-top microphysics important in the
precipitation development process (see Rosenfeld et al.
2008).

It is important that any implementation of satellite
“interest fields” within a complex decision-support sys-
tem (e.g., the “AutoNowcaster”; Wilson et al. 1998;
Mueller et al. 2003), the Met Office’s Generating Ad-
vanced Nowcasts for Deployment in Operational Land
Surface Flood Forecast (GANDOLF; Pierce and
Hardaker 2000), the Central American Flash Flood
Guidance System (CAFFG; see online at www.hrc-lab.
org/right_nav_widgets/realtime_caffg/index.php), and
the Corridor Integrated Weather System (CIWS; Wolf-
son et al. 2005) as developed at the Massachusetts In-
stitute of Technology, requires knowledge of both the
accuracy and uncertainty in the estimates. We hope
these results can assist in the use of satellite-based CI
nowcasting procedures within such systems.
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